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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE No. 1699

A LINEARIZED SOLUTION FOR TIME-DEPENDENT VELOCITY
POTENTIALS NEAR THREE-ﬁIMENSIONAL WINGS AT
SUPERSONIC SPEEDS

By John C. Evvard

SUMMARY

A source-digtribution method 1s applied toc derive a sclution for
the time-dependent surface velocity potential of thin finite wings at
supersonic speeds. The solution is illugtrated by evaluating the
upwash over the tip of an arbitrary-plan-boundary wing having a
superaonic and subsonic leading edge. The upwash then gives the
effective sources of the flow field lying between the wing plan
boundary and the foremcst Mach waves, which are applied in the
derivation of the wing-surface velocity potential. A simple example,
the load distribution on a wing whose effective angle of attack is
changing linearly with time, is included to illustrate the appli-
cations of the derived expressions.

INTRODUCTION

The analysis of the aerodynamic effects in the vicinity of thin
wings at supersonic speeds can be simplified to obtain useful results
by means cof the linearized theory. Steady-~state or time-independent
solutions have been obtained for enough cases (for example, refer-
ences 1 to 27) that the essential features of the load distributions
on various parts of the wing can be determined by graphical or
analytical methods. The time-dependent load distributions are more
difficult to cbtain. Such problems include the transient effects
of gusts, changes 1in angle of attack, skin vibration, and flutter.

A number of investigators have studied two-dimensional time-

dependent flows over thin wings. These flows are generally included
as special cases of the theory of reference 27. The method of
reference 27 1s simlilar to the steady-state golution of reference 1
and includes three-dimensional or finite wing solutions in cases
where the aerodynamic effects of the bottom and top wing surfaces are
independent. No soclutions are known to have been published for

cases involving interaction between the flow over the bottom and

top wing surfaces.
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The concepts of references 9 and 18 that lead to solutionms,
which include the effects of interaction between the bottom and
top wing surfaces in the steady state, can also be applied to
obtain time-dependent solutions. The derivation of the surface
veloclty potential in regions influenced by subsonic leading
edges was completed during January 1948 at the NACA Cleveland
laboratory and is presented herein.

ANALYSIS

In order to unify the discussion, parts of the fundamental
treatment presented in reference 27 are repeated. The analysis
includes the derivations of (1) the time-dependent, linearized
partial-differential equation for the perturbation-velocity
potential of an ideal fluid, (2) the fundamental solution that
will satisfy the boundary conditlions on the wing, (3) the upwash
between the wing boundary and the foremost Mach 1line, and (4) the
veloclity potentlal on the surface of the wing.

Differential equation. - The linearized Euler's equations
for a compressible fluid may be written

) 2,
éiv;wé_g.__l_éz
oxdt ox Py ox

o o 1
dzdt oxdz Py Oz

(1)

where

o perturbation-velocity potentilal
t time

U free-stream velocity

p free-gtream density
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P static pressure

7

| ~ x,y,z Cartesian coordinates (free stream parallel to x axis)
(A complete 1list of symbols is included in appendix A.)

When equations(l) are multiplied by dx,

dy, and dz respec-
tively, added, and integrated, the result is

L6

E+U§c—p+-2-=-g(t)

2
o (2)

vhere g(t) 1s an integration constant at any given time.

The linearized continuity equation can be written

2 2 2
S T S
ot ox 0\ ax? Byz 322

or, because the velocity of sound c¢ 1is

equation (3) becomes

3 o D a'%p ach Bch
<§F‘ * UE;> li'oco2 Tt dy? * 322 ° (3a)

Substitution of p/;)o from equation (2) in equation (3) yields

-y e, ¥ o 1% wd 14 |,
ax? Byz 322 2 a? Fadt o2at

where M 1is the Mach number of the free stream and the zero sub-
script has been dropped from c.

Equation (4) is the required linearized partial-differential
equation for the velocity potential. If @ 1is independent of time,
. _ the Prandtl-Glauert equation immediately results.
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The function g(t) depends on the condition of the flow ahead
of the body. If the flow is uniform and undisturbed, g will be
constant (from equation (2)) and equal to po/po. The function g

will be assumed constant in the rest of the analysis.

¥L6

A change in variables will convert equation (4) to a standard
form of the wave equation, The transformation equations are

X' =X

y'-Jl-sz
z' = A1 - Mz z
xM

t' = (1 - M) b+ (5)

Application of equation (5) in equation (4), with g set equal to
a constant, gives

'y .50 ®

Basic solutions of equation (6) corresponding to spherical waves
are

1 _r % r' %!

where r' = «/;‘2 +3'C + z'2, B2 = M2 - l, and f is an arbitrary
function.

The basic solution for the supersonic case is obtained as the

sum of equations (7). (See reference 27.) If this solution 1is
transformed to a general point in the- x,y,z space, the basic
solution of equation (4) assumes the form
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where w 18 the local 2z component of the perturbation velocity.
Equation (11) defines the strength of the local source in terms of
the 2z component of the perturbation velocity. The fact that equa-
tion (11) is independent of the value of £; 1is in agreement with
the statement that only those subelements near the point (x,y,O)
contribute to the vertical velocity dw/dz on the wing surface.
Physically, this evaluation infers that the flow is tangent to the
wing surface at each local point.

The time-delay terms of equation (8) can be denoted by T, and
Ty Where

v et , Vix-02 - g2-n)? - p%2

ﬁ c Bzc

o (=M M(x-£)? - p2(y-m)? - p2s?

(12)
82¢ 82

The velocity potential at any point (x,y) is obtained by integrating
the sources In the 2z = 0 plane over the area S Included in the
forward Mach cone., By use of equation (11), the velocity potential

becomes
1 [w(&,n,t-7,) +w( E,n,t-Tb)] a¢ dn
®=-3 (13)
s | (x-1)2 - B3(z-n)? - p%e?

Equation (13) was derived by Garrick and Rubinow in reference 27 and
glves the velocity potsntial at any point in space 1n terms of the

z component of the perturbation veloclty In the 2z = O plane. The
equation reduces to the steady-state solution of Puckett (reference 1)
when w 1is Independent of tims.

4

A physical interpretation may be given for the time delays Ta

. and T. of equations (12) and (13). If a disturbance is generated
at point (i,n) at time t = 0, the wave front from that disturbance
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will travel outward as a spherical wave about a center that moves with
the free-stream velocity. (The trace of the waves on the z = O plane
is 1llustrated in fig. 2.) The wave front will enter and emerge from
the point (x,y,z) at two later times T, and T,. The equation of

the spherical wave path that passes through the point (x,y,z) is

(x-£-UT)2 + (3-1)2 + 22 = 272 (14)

The solution for T 1is

rol b, N(xt)? - PP - @2
pZc B%c

which gives equations (12). (At a given point (x,y,z), the strengths
of the same wave at the two times T, and T, are equal despite the

change in the radius of the wave front,) At a given time t, only the
wave fronts that are entering and emerging from the point (x,y,z) con-
tribute to the velocity potential. These two waves originated at the
point (£,n,0) at times (t-T,) and (t-T).

The remainder of the analysis is primarily concerned with the
asrodynamics in the plane of the wing so that g may be set equal to
zero. Equations (12) and (13) may also be conveniently expressed in
an oblique coordinate system whose axes lle parallel to the Mach lines.
(see fig., 3.) The transformation equations are

_ M - _ M
w =g (Epn) V=2 (E+pn)
t = % (v+u) N = % (v-u)
u, = .gé. (x-By) Vu = Ziﬁ (x+8y)
x =§ (v,+u,) y -i (vy=uy) (15)

Inasmuch as the elemental area in the (u,v) coordinate system 1s

Eg dudv, equations (13) and (12), in the case of 2z = O, became
M
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N ZMK [w(u v,t-Tg) + w(u,v,t-‘rb)]dudv ' (16)
/\/(u‘,-u) fvy-v)

) M(v,-v4u,-u) + 2/]/(u'-u) (vy-v)

& MBec
M(vw-v+u"-u) - 2/ (%-u)(vw-v) (17)
L MBe

Equation (16) gives the velocity potential in the g = 0 plane
in terms of the perturbation-velccity component w normal to the
plane. If only supersonic leading edges are included in the forward
Mach cons from (x,y), w may be evaluated in terms of the effective
wing slopes O measured in 17 = constant planes by the relation

w=Ug (18)

If a gubsonic leading (or trailing) edge is also included in the
forward Mach cone from (x,y), the slopes of the stream-lines A
agsocliated with the upwash between the wing boundary and the foremocelt
Mach wave must be evaluated and included in the calculation (equa-
tion (16)) for the velccity potential.

Upwash between wing boundary and formost Mach line, - The slopes
of the streamlines in the region SD of figure 4 could concelvably
‘be generated by a thin wing or diaphragm, as employed in reference 9,

The flows above and below the 2z = 0 plane may then be independently
treated. The veloclity potential on the top surface of the 2z = O
plane is given by equations (16) and (18) as
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CPT = - _2_3_“ E’T(qu:t'Ta) +0T(u,v,t'7bﬂdudv
s 4/(vp=u) (vp-v)
v
i _2%? [)\(u,v,t-Ta) + Nu,v,t-'rb)] dudv (19)

SD IV(D.D-U.) (VD-V)

where up and vp are the coordinates of the point at which ® 1is

evaluated, © T represents the slopes of the streamlines on the top

ving surface, and A represents the slopes of the streamlines in the
fleld Sp from the point of view of the top wing surface. Similarly,
the potential on the bottcm surface of the z = 0 plane is

o - . U f EB(u,v,t-Ta) + OB(u,v,t7Tb):' dudv
B 2Mn '
Sy

A (up=u) (v-v)

- A (u,v,t-7_) + Nu,v,t-T,) | dudv
) _2_;4]“__ f I: a b] (20)
SD

’v (up-u) (vp~v)

The pressure at a given polnt of the field Sy (fig. 4) in the
plane of the wing can be calculated by substituting either gp or
Pg into equation (2). The two computations of the pressure can

then be equated:

Bcpr+Ua:pT ach+L‘apB

% "% " ® s (21)
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Equation (21) has the solution

P =P, + 2H(x-Ut,y) (21a)

where H i1s an integration function. Substitution of equations (19)
and (20) in (2la) yields

a,b dudv d.ud.v v E
(up-u) (vD-v ZM“ 2 1/( up-u) (vp-v)

(21v)

(In equation (21b) and in some of the equations to follow, the
notation A, means A(uw,v,t-T,) andkab means

[}\(u,v,t-‘ra) + Nu,v,t-7p) . A similar notation 1s applied to
OB, Op, and (0Og-Gp).) If equation (21b) is substituted into (19),
the result is

(0.40,,)_ ,dudv .
Pp = -4-2% B T'a,b + H (22)

2 1/(uD-u) (vp-v)

Equation (22) represents the velocity potential in the plane of the
wing for the region Sp. Similarly, formulation of @ would change

only the sign affixed to H. The function 2HE of equation (2la)
represents the difference in potentlal across the z = 0 plane,
corregponding to the strength of vorticity in the wake of the wing
(reference 18). For flat-plate wings, Oy +Op = 0 and H is

Just the potential on the top surface of the vortex sheet,

The foremost Mach wave (fig. 4 or 5) originating on the leading
edge generally representa a line of infinitesimal disturbance along
which H(x-Ut,y) can be set equal to zero at all times., The func-
tion H remains zerc along Y = constant lines for values of x
not intercepted by the wing or a material body (region SD 3 of

fig. 5). The region SD 2 of figure 5 generally contains a vortex
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sheet lying in the plane of the wing and H is not zero. The func-
tion H(y), established along the wing trailing edge at some time ¢,
remains unaltered for later times along a curve that sweeps down-
atream with the free-stream velocity and has the form of the wing
tralling edge. The rest of the discussion is concerned with only the
effects of leading edges, that 1s, those cases for which H 1s zero.

The origin of coordinates for the wing shown on figure 4 1is
placed at the Junction of the supersonic and subsonic leading edge.
The supersonic and subsonic leading edges are respectively defined by
the equations

v

vl(u) or u = u(v)

v

vz(u) or u = uz(v) (23)

Equation (21b) with H set equal to zero, then becomes

up vy up vz(u)
d
du Aa,b v - du (CB'CT)a.,bdv
AIuD-u A’vD-v n/uD-u 2 vp-v
0 v?(u) 0 vl(u)

(21c)

In the steady-state solution, A and (Op-Op) are independent
- of uy (references 9 and 11), so that the integrations with respect
to v may be equqted to give

D vo(u)

A pdv ) (%'%)a,b dv

vz(u) MVD-V vl(u) ZA[vD-v

The reduction of equation (21c) to give equation (24) for the

time-independent case shows that only those wing slopes along
u = up contribute to the upwash for points on this Mach line. In

(24)

the time-dependent case, both A and (0p-Op) contain functions
of wup, and the validity of the reduction may be questioned. If

974
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in the time-dependent case only those wing slopes along u = up

were to contribute to the upwash for points on this Mach line,
A and (GB‘GT) would become independent of wup and the reduction

of equation (21c) to equation (24) would again be justified. An
argument to substantiate this cholce 1is presented in appendix B.

If u is replaced by up 1in equation (24), the two time
delays become equal and are linear with respect to v:

- VD-V

gc

T, = Tb

Each ininitesimal wlng element then produces at time t and place vp
an increment in upwash corresponding to the steady-state effect of
wing elements whose slopes are the same as the time-dependent elements
evaluated at time t-Ta. The solution of equation (24) is the sum

of* a series of infinltesimal steady-state solutions, each of which
satisfies Abel's equation (reference 11) and each of which requires
integration only over the wing slopes along u = up.

In order to illustrate the argument, the increment in A at
point (up, vp) (fig. 6) due to a steady-state wing element of

length dv at point (up,v) may be obtained (appendix B) from
Abel's equation in the manner of reference 11 as

ar  (%gOp) fvp-v
v Zn(vD-v)qva-vz

Equation (25) may be applied in either the time-~dependent or the
time-independent cases. For the time-independent cases, the wing
slopes are evaluated at up,v. For the time-dependent sclutions,

the wing slopes are evaluated at (up,v) at time t = JD-v

(25)

Integration of equation (25) across the wing gives
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Vo </ VD-€>
(o] u,v,t - Vo-v dv
A(u,vD,t) = 1 BTN fc 2 (26)
2x m vp-v
1

where Op p means (Oh- T). That equation (26) is a sclution of equa-
tion (24),15 shown in appendix B.

Evaluation of velocity potential on wing surface. - Equations (19)
and (26) now allow the calculations of the velocity potential on the

wing surface. With reference to figure 7, the velocity potential at
the point (uw,vw) is

(1 N
o} A a
o =_—g— Ta,b dudv oy a,b wdv
T 2Mrc Z2Mr
’\Ru.,,-u)(vw-V) \/(uv-u)(vw-V)
]
w,142 W USp
(27)
For the wing of figure 7, the integration of A over the
area SD is
A dud
..U ab oy
- 2Mn
< ﬂ/iuw-u)(vw-v)
D
u2(%) oo,
v
= - _2_%“_ du azb D (28)
o (uw-u) N 4,vw—vD
2

If N from equation (26) is substituted into equation (28), there
results

VL6
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Although equation (27a) looks rather formidable, there are
actually only two types of term. Simple variations are obtained
by changing signs from minus to plus, by replacing dbottom-surface
wing slopes by top-surface wing slopes, or by altering the limits
of integration. Simplifications also occur 1in specific examples,
although the indicated integrations to obtain explicit solutions
are generally difficult to perform.

If the wing slopes in the vicinity of the wing tip vary con-
tinuously with either time or position, equation (27a) can be
applied in its present form without altering the limits of integra-
tion. The equations for the wing slope would be inaserted into
equation (27a) and the indicated integrations conducted. This type
of calcnlation has been 1llustrated for periodic oscillations of
flat-plate wings in references 27 and 28 when the bottom- and top-
wing slopes are independent. A less complicated example, in which
the angle of attack of all wing elements of a flat plate varies
linearly with time, illustrates this type of calculation.

If the angle of attack of all wing elements is changed at a
uniform rate m for all times, the wing slopee may be expressed
as

OB::CL'Fmt--O'T (29)

where a 1is the angle of attack of the wing at time t = O,

These effective wing slopes may correspond to a constant accelera-
tion of mU in the 2z direction. Substitution of equation (29)
into equation (27a) gives

v

v
@ Uao du dv
T m uw-u I\'vv-v
u»g(vw) vy(u)
Uy Vv Vo~V -u
Un a t - -E'—)dv
+ — 1 Be B¢

(30)

Mr s
up(v,) e v, () \Jv"-v
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Integration with regpect to v produces

u,, \ (u) ~ %
V., =¥ (u -
o =2 (aem) | AT gy m | m@),,
u -u '

3gc
ug N u, A Yu

Uy
- % \ (=) (vy=v1 (1)) du (30a)

Y2

If the egquation for the leading edge of the wing is v = - klu,
equation (30a) may be integrated to obtain

- 20 ) pmt - B m /1 _8
Pr = 4o l}.+mt 265 (k1+l)uw+'ZB_5(k1 :‘Dvw

k
+ 7‘4‘%5(1- -;})u;ll /\/ (u,~u5) (v, +kyu5)

2
¢ =2 | (o +mt) (kyuy +7y) - (kp +1)m(kyuy, +vy,) tan-l ”kl(“w up)
ﬁ , 4cky Yy tEjup

(31)

The pressure coefficient may be derived from equation (2) as

P-p

SENE
Cp ] .2 U<1+U > (32)
2%°

Substitution of equation (31) into equation (32) results in the pres-
sure coefficlent on a family of wings in the region influenced by
the subsonic leading edge. :
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Page 20: Equation (33) should read as follows:

5.6

Cp = - E; [;M (léBckl ) V/(uw - vp) (vy + kjup)

‘,_l

N ' op_ (i + 12\|. [k (v - w)
.,V_k_ IEkJ' +1) (o + mt) + m(kluw‘ + Vw) (ﬁ& 2pck; >]tan (Vw Z k1up)

dug) vy t kKjup

+ | (a +‘mt) - En:(uw - uw) - 3;:310(“‘« + kjup) (l ")\ u - u)
W

1 w B S IR wsr o - —_

(33)

where u,(v) 1s evaluated at v = v. (Although equation (33) was

derived for the case of constant acceleration mU in the gz direc-
tion, the solution may be ccmbined with other equations to evaluate
the pressure distributions for a variety of wing motions. For
example, & wing rotating with constant rate m about an axis of
plteh fixed with respect to the wing and lying in the 2z = O plane
would have the pressure distribution given by equation (33) superposed
on the pressure distribution associated with uniform rates of pitch
described in reference 21.)

The steady-state solution included in reference 18 1is obtained
from equation (33) by setting m = O, The solution for the infinite
swept wing is obtained by setting v, = uy(vy) = 0 and computing
Cp. The values of Cp obtalned along the line v, = 0 are then

constant along lines parallel to the leading edge. The load dis-
tributions of a family of wing plan boundaries may be evaluated by
choosing the desired equation u = up(v) for the wing-tip plan
boundary.

The general equation (27a) also includes solutions for which
a finite number of discontinuities can exist in the wing slopes with
respect to either position or time. The procedure is the same as
in the case of continuous wing slopes, except that the flelds
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of integration will be subdivided in accordance with the requirement
of the discontinuity. For example, in the problem of determining
gust loads, the effective angle of attack of the wing will change
discontinuously along a line parallel to the y axis that moves
downstream with the free-gtream velocity. If the initial wing slope
is taken as zero and the increment in wing slope due to the gust 1s
a, the slopes of the wing at time + - T (as time appears in equa-
tion (27a)) are either zero or a according to the inequalities

> O
g U(t —T) ) GB = OT = 0
g <U(t-T), OB = -GT = Qo
The two-dimensional solution of this problem is presented in ref-

erence 29, The three-dimensional solution of this and other transient
problems within the scope of equation (27a) requires further research.

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohioc , May 18, 1948.
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APPENDIX A

SYMBOLS

The following symbols are used in this report.

P-Po
pressure coefficient, Ef-——
= pU
2
velocity of sound

function

integration function of time (herein considered as
constant)

integration function of x-Ut and y
integral

constant greater than zero

free-stream Mach number

rate of increase of wing angle of attack

static pressure

V(x-£)2 - p2(y-n)? - p222
/\/;'2 + jv? + z'2

plan-form area

manipulation varilable

time

(1-M3 ¢ +—’i—"3
free-stream velocity, taken parallel to x axis

oblique coordinates whose axes lie parallel to Mach
lines in 2z = 0 plane

974
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) z component of perturbation velocity o (taken as
’ 32

positive in direction of an outwardly drawn normal
from plane of wing) '

X.y,2 Cartesian coordinates
x',y',z!' transformed Carteslian coordinates
(x' =x, y' =+/1-MZy, z' =V1-M?2)
¢E,n,t Cartesian coordinates in x,y,z directions, respectively
o angle of attack
B cotagent of Mach angle,v M‘2 - 1
A ~effective slopes of streamlines (measured in 1 = constant

‘planes) in 2z = 0 plane between wing boundary and
foremost Mach line, A = %
o} density

o effective wing-section slopes measured in 1 = constant
planes (d= w/U)

T time delay

® perturbation-velocity potential |
Subscripts:

0 free gtream

1,2,3 . . . numbered areas or wing-plan-boundary equations

a,b time delays T, and Ty
B bottom (of wing)

D upwash field

T top (of wing)

W wing
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Examples:

curve Vv

curve u

wing areas

derivative

NACA TN No.

vl(u) along supersonic leading edge
uz(v) along subsonic leading edge

1 plus 2

of curve up(v,) with respect to \

slope at time t-T, plus siope at time t -Ty

difference between bottom and top wing slopes at

1699

time t -Ty plus this difference at time t-Ty

OB = Op

oblique coordinates of point x,y on wing
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APPENDIX B
EVALUATION OF UPWASH
Origin of upwash, - The fundamental source solution (equa-

tion (8)) for the three-dimensional velocity potential of thin
wings moving at supersonic speeds can be written as

£
P = _%;E (B1)

If this equation i1s partially differentiated with respect to z,
the result 1is

(B2)

If z 1is allowed to approach zero, the quantity d9/dz will

approach zero unleas i‘gﬁ’ approaches infinity (that is, r
r or

approaches zero). The fundamental solution (Bl) can then be integrated
over a surface of sources in the 2z = 0 plane to obtain an extended
velocity potential. Because of the form of equation (Bz), the z com-
ponent of the perturbation velocity generated by this potential will
arise only from those subelements near r = O.

On the wing, the flow must be tangent at each point to a defined
surface. The quantity 0%z 1is therefore determined at each local
point by the wing. Under such circumstances and because of the wing
restraint, only the subelements near r = 0 obtained by assuming
(x-t)=(y-n)=(z-8)~0 contribute to IP/dz. No such restraint
exists for the upwash field. If the same conditlion 1s imposed to
evaluate 0%/Oz _in the upwash field part of the 2z = O plane, the
trivial answer = results.

oz Oz

A fundamental distinction exists between the evaluation of
393z on the surface of the wing and in the upwash field. The
wing surface is a restraint and can generate primary impulses that
lead to the velocity potential and hence to the flow distributions.
The upwash field is unrestrained, however, and can transfer from
the bottom to the top wing surfaces only those impulses that have
already been generated by the wing.
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The upwash must arise, however, from those subeléments near
r = 0. Because the unrestrained subelements in the vicinity of the
point (x-%) = (y-m) =z = 0 cannot generate upwash, Op/dz
(for z = 0) must be generated by those subelements in the vicinity

of the curve (x-£)2 - 2(y-1)2 = p222 = 0. This condition implies
that only those wing slopes along u = up generate the upwash for
points on this Mach line. The defining equation for A should then
be restricted by setting u = upy, for either time-independent or
time-dependent flows. This result was proved directly from the
integral equation (21c) for time-independent cases (reference 11).

Differential equation for A, - The increment dA at point
up,vp due to the wing elements dv (fig. 6) of wing slopes

Op .0
Bz T may be determined from equation (6) of reference 1l as

8 v +dv
dv (Op - Om)dv
_a_a; D O - O (B3)

8 - vD v ZAva -V

where s is the manipulation variable and is evaluated at s = Vpe
The integration of dv over an infinitesimal distance results
in the removal of one integration sign. Also, (Op -Oq) may be

considered as constant. Equation (B3) then becomes

A=

A |-

Ve

an %8~ % 3 vy,

ve /\/(B - VD)(VD - 7)

av en S;

(GB - OT) I}’Vz - v
= 2n (s - V)N[E_:-VE

Replacement of the manipulation variable s by vp gives equa-
tion (25) ‘

(B3a)

an (% - 9p) Va- ¥

av 2n
(vp - V)\vp - V2

(B3b)
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Demonstration by substitution that equation (26) satisfies
equation (24) when u = up. - If the integration variable v is

changed to 8 to prevent confusion, equation (26) assumes the
following form:

V2
o ust—v'5>4/v -8 ds
Muyvyt) st | BINT 7 Pos) 2 (B4)

ZK'\/V_VZL'vl vV -8

Therefore
vzcs <é 8,6 D -€> a
Ve =V - V., -8 ds
Aé,v,t- . > - AP L (85)
Be 2n V-7, v-8
61

The first member of equation (24) then becomes

a o t-—5—/)4[Vo-8 4
a,b v 1 dv B,T 285 Bc Va8 a8
Tt
-8

V5V vy '\/(v-vz ) (vp-v) vy v

\p D

1 DN s
== OB,Té,s,t- B:>/Vv2-s ds

Vl Vz

| av
(v-8) A/ (v-v5) (vp-v)

(B6)

According to integral 195 of reference 30, however,

dv 7

(v-8) r\/(v-vz)(vD-v) i /\/(va-s)(vD-s)

Vo
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Therefore

v 2 Vp-8
Di&ﬁﬂf ) " c’BLT@"E”“ ];c> ds
vz A VD-V Jv]. VD-S
A
. 0p-0p)yp &7 (57)
J 2 f\}vD-v

1

Equation (B7) 1s equation (24) for u = uy,.

974
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Figure 1. - Field of intégration for evaluating velocity potential

{(equation (10)) of a source.
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Pigure 2. - Relation between time delays
position of wave front.
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Filgure 3. - Comparison of Cartesian and oblique coordinate systems.
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Figure 4. - Flelds of integration for evaluyating upwash between
wing boundary and foremost Mach wave,
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Figure 5, - Division of external field Sp for evaluation of H.

Figure 6. - Geometric significance of factors in equation (25).
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Figure 7, =

Integration limits for equations (27) and (28).
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